vignettes/erosivity.Rmd
      erosivity.RmdThe R coefficient (MJ.mm/ha/h/yr) is defined as the long-term average of the product of the kinetic energy of a storm and the maximum 30 min intensity (Renard et al. 1991):
\[R = \frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{m_j} (EI_{30})_{k}\]
where
The erosivity \(EI_{30}\) (MJ.mm/ha/h) is equal to:
\[EI_{30} = \left( \sum_{r=1}^{m} e_r \cdot v_{r} \right) \cdot I_{30}\]
where:
The quantity \(e_r\) can be calculated for each \(r\) using one of the kinetic energy equations:
In the above equations \(i_r\) is the rainfall intensity (mm/hr) and \(e_r\) is the kinetic energy per unit of rainfall (MJ/ha/mm) for the interval \(r\).
The rules that apply in order to single out the storms causing erosion and to divide rainfalls of large duration are:
This is an example that uses the internal data set in order to compute the corresponding rainfall erosivity values.
library(hyetor)
library(tibble)
library(dplyr)
library(lubridate)
# view data
prec5min
#> # A tibble: 48,209 x 2
#>    date                 prec
#>    <dttm>              <dbl>
#>  1 1954-12-14 07:40:00     0
#>  2 1954-12-14 07:45:00     0
#>  3 1954-12-14 07:50:00     0
#>  4 1954-12-14 07:55:00     0
#>  5 1954-12-14 08:00:00     0
#>  6 1954-12-14 08:05:00     0
#>  7 1954-12-14 08:10:00     0
#>  8 1954-12-14 08:15:00     0
#>  9 1954-12-14 08:20:00     0
#> 10 1954-12-14 08:25:00     0
#> # … with 48,199 more rowsThe following code can be used to:
ei_values <- prec5min %>%
  hyet_fill(time_step = 5, ts_unit = "mins") %>%
  hyet_erosivity(time_step = 5) %>%
  filter(cum_prec > 12.7 | max_i15 > 4 * 6.4)
ei_values
#> # A tibble: 29 x 9
#>    begin               end                 duration cum_prec max_i15
#>    <dttm>              <dttm>              <drtn>      <dbl>   <dbl>
#>  1 1955-04-14 14:10:00 1955-04-14 23:40:00 575 mins     37.8    24.4
#>  2 1955-04-15 15:55:00 1955-04-16 06:30:00 880 mins     22.5    10.8
#>  3 1955-05-11 13:30:00 1955-05-11 19:00:00 335 mins     26.8    25.6
#>  4 1955-07-15 14:50:00 1955-07-15 15:45:00  60 mins     18.9    52.4
#>  5 1955-08-30 14:30:00 1955-08-30 16:35:00 130 mins     23.1    30.4
#>  6 1955-09-02 12:05:00 1955-09-02 17:25:00 325 mins     24.1    38.4
#>  7 1955-09-04 13:10:00 1955-09-04 15:25:00 140 mins     19.4    17.6
#>  8 1955-09-28 18:05:00 1955-09-28 19:30:00  90 mins     35.3    60  
#>  9 1955-10-01 11:40:00 1955-10-01 19:50:00 495 mins     18.5    17.6
#> 10 1955-10-07 14:50:00 1955-10-08 06:10:00 925 mins     76.4    26  
#> # … with 19 more rows, and 4 more variables: max_i30 <dbl>,
#> #   total_energy <dbl>, erosivity <dbl>, eros_density <dbl>After the calculation of \(EI30\) values the \(R\) coefficient can be computed with:
Brown, LC, and GR Foster. 1987. “Storm Erosivity Using Idealized Intensity Distributions.” Transactions of the ASAE 30 (2). American Society of Agricultural; Biological Engineers: 379–0386.
McGregor, K.C., Ron Bingner, A.J. Bowie, and G.R. Foster. 1995. “Erosivity Index Values for Northern Mississippi” 38 (January): 1039–47.
Renard, Kenneth G, George R Foster, Glenn A Weesies, and Jeffrey P Porter. 1991. “RUSLE: Revised Universal Soil Loss Equation.” Journal of Soil and Water Conservation 46 (1). Soil; Water Conservation Society: 30–33.
Wischmeier, Walter H, and Dwight D Smith. 1958. “Rainfall Energy and Its Relationship to Soil Loss.” EOS, Transactions American Geophysical Union 39 (2). Wiley Online Library: 285–91.