vignettes/erosivity.Rmd
erosivity.Rmd
The R coefficient (MJ.mm/ha/h/yr) is defined as the long-term average of the product of the kinetic energy of a storm and the maximum 30 min intensity (Renard et al. 1991):
\[R = \frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{m_j} (EI_{30})_{k}\]
where
The erosivity \(EI_{30}\) (MJ.mm/ha/h) is equal to:
\[EI_{30} = \left( \sum_{r=1}^{m} e_r \cdot v_{r} \right) \cdot I_{30}\]
where:
The quantity \(e_r\) can be calculated for each \(r\) using one of the kinetic energy equations:
In the above equations \(i_r\) is the rainfall intensity (mm/hr) and \(e_r\) is the kinetic energy per unit of rainfall (MJ/ha/mm) for the interval \(r\).
The rules that apply in order to single out the storms causing erosion and to divide rainfalls of large duration are:
This is an example that uses the internal data set in order to compute the corresponding rainfall erosivity values.
library(hyetor)
library(tibble)
library(dplyr)
library(lubridate)
# view data
prec5min
#> # A tibble: 48,209 x 2
#> date prec
#> <dttm> <dbl>
#> 1 1954-12-14 07:40:00 0
#> 2 1954-12-14 07:45:00 0
#> 3 1954-12-14 07:50:00 0
#> 4 1954-12-14 07:55:00 0
#> 5 1954-12-14 08:00:00 0
#> 6 1954-12-14 08:05:00 0
#> 7 1954-12-14 08:10:00 0
#> 8 1954-12-14 08:15:00 0
#> 9 1954-12-14 08:20:00 0
#> 10 1954-12-14 08:25:00 0
#> # … with 48,199 more rows
The following code can be used to:
ei_values <- prec5min %>%
hyet_fill(time_step = 5, ts_unit = "mins") %>%
hyet_erosivity(time_step = 5) %>%
filter(cum_prec > 12.7 | max_i15 > 4 * 6.4)
ei_values
#> # A tibble: 29 x 9
#> begin end duration cum_prec max_i15
#> <dttm> <dttm> <drtn> <dbl> <dbl>
#> 1 1955-04-14 14:10:00 1955-04-14 23:40:00 575 mins 37.8 24.4
#> 2 1955-04-15 15:55:00 1955-04-16 06:30:00 880 mins 22.5 10.8
#> 3 1955-05-11 13:30:00 1955-05-11 19:00:00 335 mins 26.8 25.6
#> 4 1955-07-15 14:50:00 1955-07-15 15:45:00 60 mins 18.9 52.4
#> 5 1955-08-30 14:30:00 1955-08-30 16:35:00 130 mins 23.1 30.4
#> 6 1955-09-02 12:05:00 1955-09-02 17:25:00 325 mins 24.1 38.4
#> 7 1955-09-04 13:10:00 1955-09-04 15:25:00 140 mins 19.4 17.6
#> 8 1955-09-28 18:05:00 1955-09-28 19:30:00 90 mins 35.3 60
#> 9 1955-10-01 11:40:00 1955-10-01 19:50:00 495 mins 18.5 17.6
#> 10 1955-10-07 14:50:00 1955-10-08 06:10:00 925 mins 76.4 26
#> # … with 19 more rows, and 4 more variables: max_i30 <dbl>,
#> # total_energy <dbl>, erosivity <dbl>, eros_density <dbl>
After the calculation of \(EI30\) values the \(R\) coefficient can be computed with:
Brown, LC, and GR Foster. 1987. “Storm Erosivity Using Idealized Intensity Distributions.” Transactions of the ASAE 30 (2). American Society of Agricultural; Biological Engineers: 379–0386.
McGregor, K.C., Ron Bingner, A.J. Bowie, and G.R. Foster. 1995. “Erosivity Index Values for Northern Mississippi” 38 (January): 1039–47.
Renard, Kenneth G, George R Foster, Glenn A Weesies, and Jeffrey P Porter. 1991. “RUSLE: Revised Universal Soil Loss Equation.” Journal of Soil and Water Conservation 46 (1). Soil; Water Conservation Society: 30–33.
Wischmeier, Walter H, and Dwight D Smith. 1958. “Rainfall Energy and Its Relationship to Soil Loss.” EOS, Transactions American Geophysical Union 39 (2). Wiley Online Library: 285–91.